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BENDING AND SHEAR STRESSES DEVELOPED BY THE INSTANTANEOUS
ARREST OF THE ROOT OF A MOVING CANTILEVER BEAM

By Elbridge Z. Stowell, Edward B. Schwartz
and John C. Houbolt

SUMMARY

A theoretical and experimental investigation has been
made of the behavior of a cantilever beam in transverse
motlon when 1ts root is suddenly brought to rest. Equations
are glven for determining the stresses, the deflections, and
the accelerations that arlise in the beam as a result of the
impect. The theoretical equatlons, which have been confirmed
experimentally, reveal that, at a glven percentage of the
distance from root to tip, the bending stresses for a
particular mode are independent of the length of the beam
whereas the shear stresses vary inversely with the length.

INTRODUCTION

When an asirplane lands, the vertical component of the
veloclty 1s rapildly reduced to zero. In the absence of a
thorough analysis of the stresses that arise from such
shocks, 1t 1s customary for englneers to assume that the
landing loads are statlc and independent of the elastic
properties of the structure. As an 1nitlal step in the study
of elastlc structures under shock loads, aw investigation has
been made to determine the effect on a simple structure of
the sudden arrest of lts motion and the effect of the
geometry of the structure on the stresses that result. The
particular case treated in this report covers the basic
problem of the instantaneous arrest of the root of a moving
cantilever beam. The solution of thls problem glves the
energy consumed in exciting the different modes of vibration
and the stresses, deflectiona, and accelerations that result
throughout the beam. S

This investlgation ls based on the usual engineering
beam theory in which the deflections are considered to be the
result of bending alone and shear deflections are neglected.
The theory, as appllied to ordinary beams, gives reasonably
good results as long as the distance between inflection
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points 1s greater than a few times the depth of the beam.
When this theory for beam action 18 used in vibration
problems, such as the problem in the present paper, the
results are satisfactory for those modes of vibration for
which the nodes are not too close together. Thlis report
summarizes the results of a theoretical solution, glven in
the appendix, and presents an experimental verlficatlon

of these results.
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SYMBOLS

modulus of elasticity
welght density of materlel

coefficient of equivalent viscous damping of
material

veloclty of sound in material (y%§>
acceleration of gravity
length of beam

moment of lnertia of cross section of beam about
neutral axls

crosa-sectional area of beam

radius of gyratlon of cross section of béam (&G;)
coordinate along beam measured from root

distance from neutral axls of beam to any fiber
time, zero at lmpact

operator (g%)

integers 1, 2, 3, eto. designating a particular
mode of vibration )

nth positive root of 1 + cos 8 cosh 8§ =0

undamped natural angular frequency of nth mode,
8.2
radlans per second pec —%r
L
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wn' damped natural angular frequency of nth mode,

-—_— o aem . A A hzﬁ) 2
' radians per second éh Jl = —n- )

2., 2
(éhen é:ig— > 1, the "frequency" is defined

. 2
by wn'=wnv}h—,jm2“—-}>

v veloclty of beam prior to impact

w(x,t) deflection of beam at station x and time ¢t

wn(x,t) deflection of beam at station x and time ¢t
for nth mode of vibration

a(x,t) acceleration of beam at station. x and time ¢

an(x,t) acceleration of beam at station x and time t
for nth mode of vibration

s(x,y,t) bending stress in beam at station x, distance
from neutral axis y, and time ¢t

On(x,y,t) bending stress in beam at station x, distance
from neutral axis Yy, and time t for
nth mode of vibratlon

T(x,t) average shear stress over cross section of beam
at statlon x and time ¢

Tn(x,t) average shear stress over cross section of beam
at station x and time t for nth mode of

vibration
An bending-stress coefficlent
Bp shear-stress coefflclent

Cn deflection coefficient
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RESULTS AND CONCILUSIONS
Theoretical

When a cantlilever beam under uniform translation in
a direction perpendicular to 1ts length has its root
instantaneously brought to rest, there 1s exclted a
theoretically infinite number of modes of vibration.
With each successive mode, damping has an increasing
influence upon the frequencles and amplitudes of vibratlon
and, for sufficlently high modes, even changes the type
of motion from osclllatory to nonoscillatory motion. In
the lower modes, however, damping has little effect, and
only terms of the first erder ln dampling need to be 1lncluded
in the equations. Only the equations applicable to the
lower modes, which alone are of importance in any practical
case, are pnresented In this sectlon of the paper. For a
more complete treatment of damping, see the appendilx.

The angular frequencies (2w times the frequencles
in cps) are glven by the equation

0,2
wn = Pc? . (1)

where 0pn has the following values for successive modes
of vibratlon:

8; = 1.875104L 8 = 14.137168

82 = 4.694098 Bg = 17.278759

93 = 7.854L.757 8n z%- (2n-1)w, n > 6
B), = 10.995541

The snergy that the beam possesses before Ilmpact is
consumed 1n exciting the wvarlous modes of vibration and
1s dlstributed .among the modes as follows:

T
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Mode, n Percentage of energy
1 - - S 61.
2 18.
ﬁ 7.4
5 39
g 1.3
7 to o 6.1

This distribution of energy among the different modes of
vibration 1s presented graphically in figure 1.

All streasses, deflectlons, and accelerations are
damped sinusoidal functions of time and vary along the
length of the beam. The bending stress op(x,y,t) and
the average shear stress Tn(x,t), assoclated with the
nth mode of vibration, are given by the equatlions

hwna

on(x,y,t) = Ap % %Ee-.ZE t sin wnpt (2)
KwnZt

Ta(x,t) = By % £Be” 2E = ain wpt (3)

The varlation of the dimensionless coefficlents Ap
and Bp with x/I. 1s glven for n =1, 2, and 3 in
figures 2 and 3. The highest values of Ap and By,
and hence the highest stresses, occur at the root of the
beam. These values, for the first slx modes, are

Mode, n An at root Bn at root
1 1.566 2.146
2 .§88 h.lﬁ
. .99
ﬁ .562 z.o
2 .283 L.00
.231 L..00

The foregolng values of Apn and Bp at the root are
presented graphically in figure lj.

The meximum values with respect to time of op(x,y,t)

and Tn(x,t) assoclated with the nth mode of vibration,
when the effects of damping are neglected, are
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on(x,5) = &y 3 £E (L)
Tn(x) = By ¥ £E (5)

The deflections wp(x,t) for the nth mode of
vibration are given by the equation

e =—p—t
wn(x,t) = Cp % % e 2 sin wpt (6)
The accelerations ap(x,t) Zfor the nth mode, when
damping 1s sufficlently small, are given by

an(x,t) = -wp2 wn(x,t) (7)

The varlation of the dimenslonless coefficlent Cp
with x/I. 1is glven for n =1, 2, and.3 in figure 5.

The equations (L) to (7) for stress, deflection,
and acceleration glve the wvalues assoclated with the
nth mode of vibration. Since all modes of vibration
occur simulteneously, the net results are the superposition
of the effects of all modes. This superposition glves
the following equatlons:

For bending stress,
: _Kml2t
o(x,y,t) = % %E Aie ZE" ain wit

g2,
+ Age 2F  sin wot + ..:) (8)

For average shear stress,

Aw,2
et
T(x,t) = 3 §E<31e sin wqt

Awo2
+ B2e- 2 ¢ sin wpt + ..:> (9)
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For deflection

TR .. e aiea ¥ AT t‘_:_ e L
w(x,t) = % % cie 25 . 8ln wyt.

o, 2
+ Cge- Zﬁ ¢ sin wpt + ..;) | (10)

For acceleration, when damping 1s sufficiently small,

2 Mlzt
a(x,t) = % % C1w12%e 2B ° sin wgt

Aw,2
S
+ nggze 4 s8in wpt + ...> (11)

The equation for bending stress (equation (L))
reveals that, at a given percentage of the distance from
root to tip, the bending stress for a particular mode 1s
independent of the length of the beam and depends only
on the veloclty btefore lmpact. The equation for shear
stress (equation (5)) reveals that the shear stresses at
any station vary inversely wlth the length of the beam.
These results are contrary to those that might be
expected on the baslis of experlence with the statilc
behavior of structures. For thlis reason an experlimental
investigation was made.

Experimental

A clrcular steel tube of l1l-inch outslde dliameter
and 0.028-inch wall thickness was mounted symmetrically
on the end of a pendulum to form a palr of cantilever
beams. (See fig. 6) The pendulum was permitted to start
its swing from a predetermined position and was suddenly
brought to rest at the bottom of 1ts swlng against an
electromagnet used to prevent rebound. The effect of
length was studied by reducing the length of the tube in
successive tests. The bending and shear stralns were
measured by electrical straln gages that were mounted on
the tube as shown in figure 7. Each palr of gages was
Incorporated into a Wheatstone bridge circult as shown
diagrammatically in figure 8. The outputs of the bridge
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systems were fed through a strain-gage amplifier into a
multichannel oscillograph that recorded the stralns on
moving photographic paper. The amplitude of the components
of straln due to the modes of higher frequency was

reduced, however, because of the response characteristics
of the oscillograph. The frequency-response curve for

the osclllograph used 1s given in flgure 9.

Typical records for tubes of two lengths are shown
in figure 10. 1Inspectlon of the record for the cantilever

beam 26& inches long shows the superposition of the

second and third modes upon the first mode. The record
shows that, in the case of the bending stralin, the
contribution of the second mode 1s small; whereas, in
the case of the shear straln, the contribution of the
second mode 1s large. This observatlion conflrms
qualitatively the theoretical results shown in figure L.
The same effect 1s not shown, however, in the record for

the cantilever beam 11& Inches long because of the

comblned action of damping and reduced response of the
osclllograph to the higher frequencles assoclated with
this short length of tube.

The bending stresses computed by use of equation (8),
in which only the first three modes are used, are given
by the solid-line curve of flgure 11 for the cantlilever

beam 26% inches long. Comparlson of this curve with the

record obtalned durlng the flrst % cycle of the first

mode (see fig. 10) shows good agreement as regards the
wave shape.

Because of the damping present in the tube and the
response characterlstics of the oscillograph, the only
component of vibratlon that could be satisfactorily
recorded for all lengths of cantilever tube was the
fundamental or first mode. The gquantitatlive results of
the tests consequently were based upon thls mode of
vibration. This procedure 1s sound because the effects
of the varlous harmonics are lndependent of one another.
In the analysls of the results, the data had to be
corrected for the influence of the magnet.

The observed frequencles are compared with the
frequencies computed from equation (1) for the first
mode in the following table:
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Frequency
“Length = | Observed ... . |... .Computed
(in.) (cps) ' (cps) -
36E 27.9 28.2
, 26& 52.1 53.2
16L2L 131 137
114 272 277
i 7 77

The experimental values of extreme-fiber bending
stresses and the shear stressea at the root, for the
fundamental mode, are plotted in figure 12. In figure 12
are also shown the corresoonding theoretical curves of
equation (L) for bending and equation (5) for shear with
n taken as 1. It 1s observed that the experimental
polnts follow the trend of and lle close to the theoretlcal
curves.

Langley Memorial Aeronautical Laboratory
Natlonal Advisory Committee for Aeronautlcs
Langley Field, Va.
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APPENDIX
THEORETICAL DERIVATION

General analyslis.- Consider a beam of uniform cross
section 1n equillbrium. If a portion of the beam 1is
suddenly disturbed, as by a shock, in a direction
perpendicular to 1ts length, the beam 1s set lnto damped
bending oscillations. The equation of motion for these
bending osclllations 1s glven by the differentlal
equation (reference 1)

25,4-“, 2. 07w 39w 6211
Ep + AP =0 (Al)
éxE bxhbt bta

The demping term Xpaiihl- i1s derived on the
dxltdyt

assumption that the longltudinal damping force per unit
area at any point on the cross section of the beam 1s
proportional to the rate of change of longitudinal strain
at that noint. (See reference 2.) This type of force 1is
analogous to ordinary viscous drag, in which the tangential
force per unit area 1s provortional to the rate of change

of shear strain. With the use of the notation ¢2 = %F,

equation (Al) can be written

éhw A _ddw 1 d%w _ 0 (42)

+
oxlt T E oxlidt | c2p2 dt2

In accordance with the Heaviside operational methods
(reference 3), equation (A2) may be reduced to an
ordinary differential equation of the fourth .order by

0
writing p = SE; thus,

<1 + p—) 2p2 (43)
(¢}

]
(@]
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The general solution of egquation (A3) 1s-

R
oL Lt e

P cosh e% + Q sinh eL + R 8in 8T + 8 cos 9% (Aly)

where

ip

:

@®
]
tt

Pc

H

The coefficients P, Q, R, and S are to be determined from
the boundary conditions. The case under conslderation is
that of a cantilever moving with uniform veloclity v and
having 1its base brought instantaneously to rest. The
boundary conditions for this case are

(@), pirhn = - o
B ().

The velocity of the root as given by the first boundary
condition 1s represented graochically in figure 13(a).

The rules of the Heavlislide calculus, however, have been
devised for a disturbance, called the unit functionlZ ,
shown in figure 13(b). By the principle of superposition,
the veloclty function shown ln figure 13(a) may be
considered as a superposition of those shown in figures 13(c)
and 13(d). The veloclty therefore conslsts of a constant
veloclty v (fig. 13(c)) added to the solutlon of the
problem obtained by the Heaviside expansion theorem for
the disturbance shown in figure 13(d). On the basls of
this procedure, the first boundary conditlion may be

written
(: :) = P(Wlg=p = -v4



12 NACA ARR No. ILLI27

With the application.of the boundary conditions to
equation (Al), the operational form of the solution for
the velocity (that induced by the disturbance) 1s found
to be

= -vd x .
P =3{T +cosh 8 cos 9)[(1 *+ cos 6 cosh 6) <°°Sh b, + cos ef)

+s8in 9-sinh 8 {(cosh e% - ¢cos8 6%)

+ (slnh 6 cos 8 + cosh ¢ sin g) (sin e% - sinh e’f}] (A5)

Interpretation of this operational expression and addition
of the constant veloclty v glves for the total velocity

2 Ay,

® )\v‘l‘n
6_"_(6’.2_3). =v-vl+ 2v§j1F(9n€-)e 2k cos W't -~ ————— E sin w,'t {

n= Ay 2

1l =
LE® (46)
where
On nth positive root of 1 + cos 8 cosh 6=0
8,2

Wp = pc—LT undamped natural angular frequency of

nth mode, radians/sec

' —
= wp - damped natural angular frequency of
“n LE? nth mode, radians/sec




sin 68, sinh 6, (cosh en;f- - cos an-) - (oosh On sin 8, + sinh 8, oos Gn) (sinh enl',f“ sin énff-)
F@“f) - Bn @osh &n sin.Bn ~ 8inh 6, cos en) ! .

Integration of equation (A6) with respect to the time with the condition (\w)t_o Q
" glves for the deflection

F(0 n i
w(x,t) = 2v ->: _(_n'I)e 2E" sin wy'tZ ;

Wn
n=1
w 2
v 12 1 ot ‘7
=3P Cn -9 sin wn'ti (A7)
- Aew, 2 ;
n= 1 - '
where
Cn v
2
en
The contribution of the nth mode to the deflectlon 1s
. an
2 - t :
wo(x,t) = L ¢ l e 2E ° sin wy'td (A8)
c P kzwna
1l -

hEZ

L2IfI "OoN HuV VOVN

¢T
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When Awg > 1, equation (A8) may be put in the form

2 Moo
- 1 28 ¥
fn(x,t) = % %; Cn ol e - ginh wp't 2 (A9)
\ iz ™

where now

T
R IR

Aw
The form indicated by equation (A8), where ?ﬁ? <1, 1s

characterlstic:of the lower modes and represents damped
oscillatory motion. The form indicated by equation (A9),

K .
where —23 > 1 (damping greater than critical), is

characteristic of the hlgher modes and represents
subsldence motion.

From equation (A6) for velocity and equation (A7)
for deflection, the complete beshavior of the cantllever
may be determined. The quantities of lnterest are the
bending stresses, the shear stresses, and to some extent
the acceleratlons. When damping 1s present, the equations
representing the contributlion ol the nth mode to these
quantities may be given 1n the two forms indlicated by
equations (A8) and (A9). In subsequent equations, however,
only the form indicated by equation (AB8) is given because
1t 1s characterlistic of the modes that are of practical
importance.

Bending stresses.- The bending stresses o(x,y,t)
at any Tiber distance y from the neutral axis are




, =
32w -f g
o(x,y,t) = By 7 -'
ox E
5
© Mnat ! .
=Eg%) Ap————e 28 sinup'tl E
A, n
n=1l { - 2 ; ~
LE

where - :

sin 6, sinh 6, (oosh Bn;-+ cos Gné)- (cosh 8, sin 6, + sinh By cos Gn) (ainh en% + sln én%)
b = 2 '

Bp(cosh 6y sin Op - sinh 6, ocos Bn)

The bending stress due to only the nth mode 1is

On(x)ylt) = E%

okd
=
D
[\*]
=
(]
e
B
ot
ha

QT



Shear stresses.- The average shear stress over the cross section T(x,t)

T(x,t) = Ep° 39w
bx5
o )\.wnzt
=E§% Bn__é___a- 2E " sin wy't 1
n=1 J )‘2‘°n2
LE?

where

Pna

nsin 8n sinh g, (sinh enE- - 8in ené') - (oosh Bn sin g, + sinh gp cos 911) gcosh Bni- + cos Bni)

cosh g sin g, - sinh g, cos g,
The average shear stress due to only the nth mode 1is
o2
1 -5t .
Bn : e ©E  gin mn'ti

2
A,
L|.E2

Accelerations.- From equation (A6), with the ald of the relation

Tpl(x,t) = E{-

o

] -

pF(t)Z = F(0)pl + F'(t)1

[
o

L2INI *oN WV VOVN
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the acceleration anywhere on the bea.m is found to be

a(x,t) = Q—Lln-tl [221?@%) - 1]

n=1
2
2 ( - ___ M:n2 K_u.h_ 1 - t&i
-Z.Lpz sin W't + L2 cosw, 't |2
2
n=1 A'%hz 1 - La»_n._
L2 2E®

With the ald of the orthogonal properties of the
functions F(Bn%) i1t is possible to show that the

quantity ZZF(en )- 1 reduces to zero when 0 < =< 1.

)

At =0, the quantity 22- (B )equ.als sero, and.only the

n=1
term -vpf remains. This term indicates that at t =0
an infinite acceleration of zero duration exists at the
root.

md 1]

The acceleration due to only the nth mode 1s

R ‘, Ao, 2
-2y
s Iﬁ%E 282 CE (ginw,'t + cos w,'t|d
° P Aaw 2 - N%ha

-

Comparison with the exoression for wp(x,t) (equation (A8))
shows that the acceleration for each mode 1s out of phase
with the deflection. When dampling 1s suffilclently small,
however, the relation between the acceleratlon and the
deflection reduces to the well-known result for undamped
vibration

an(xlt) e

an(x,t) = 'wnzwn(x, t)



18

NACA ARR No. ILI27

REFERENCES

Den Hartog, J. P.: Mechanical Vibrations, Second ed.,
McGraw-Hill Book Co., Inc., 1540, p. 180.

Honda, K&tard, and Konno, Selbei: On the Determination
of the Coefficient of Normal Viscosity of Metals.
Phil. Mag., ser. 6, vol. L2, no. 247, July 1921,
pPp. 115-123%,

Carson, John R.: Electric Circult Theory and the
Operational Calculus., McGraw-H111l Book Co., Inc.,

1926.




60
Percenilage
of 40 -
total
energy -
20 |- NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
-
M B n —m
0 6
2 3 4 o

Mode

Figure /.-Distribution of energy among the modes of vibration.

*ON YUV VYOVN

L3IV

‘314



Fig. 2 NACA ARR No. L4127

1.6

\\
L2

A e S
n \3 \ A \
Y / A
o LN\ L s
NANI 4 P
\ _
-.4 \-\/ ///
/1
'\\ ~— _74/ TIONAL Anvmgiy
COMMITTEE FOR AERONAUTICS
~8 5 2 4 6 .8 /.0

Frgure 2.- Vvariation of bending -sliress
coefficient A, with x/L.




NACA ARR No. L4127 Fig.

2 \ A Mode

. \ ANE

.

\ / NATIONAL £VISORY
\ /T A% |

(@ 2 4 .6 8 10

Figure 3.— Variation of shear - stress
coefficient B, with x/L.



Fig. 4 NACA ARR No. L4I27

2
Ap
at ;-
root
N
, b 1 5
/ P2 3 4 S &
Mode

4 -
3 L
B,
at 2
root
;L
O
/ 2 3 4 5 (2]

Mode NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure 4.- Valves of bending-stress coefficient A,
and shear-stress coefficient B, at roof. x =0.




NACA ARR No. L4127

=./

Fig.

/L

//
/
Mode //
/
)
Tz ]
._‘é.'_:’_ - 2 -:>— _|
NATIONEL ADVIJORY \\\
1 Wmn—mpmr
? o < . /.0

Figure 5.-Variation of deflection
coefficient C, with x/L.




6

Fig.

L4127

NACA ARR No.

Pendulum assembly used in impact test.

Figure 6.-




NACA ARR No. L4127 - Figs. 7,8

oct
piré tio”
of ™

Frgure 7.- Location of strain gages om fube.

! Diameltrically
- opposite gages
N orn lube
N
N
—
OUZp vt

Figure 8.-8ridge circuit vsed in tests.



/00 —
\\

~~
L \\\\
3 60 ~——
N \ NATIONAL APVISORY
y <0 ] : RS
N ~—
0

20
% \\.\\
Y 5

0] 400 00 /1200 /600 2000 2400

frequency , cps

Figure 9.-Frequericy response of Strain-gage amplifier and
Miller (2000 ~) oscillograph; 069 critical damping.

'Bml

*ON MYV VOVN

431V



NACA ARR No. L4127

Berntdin
Lefl| arrp

NI
—
|
L
~
L
\

~ D

\
- Lt Enpeloge curve of
aziaams S ADAN AVAVAVAN

——
l

& —

nial

Fig.

a/ se¢
Sheqrr M N N AN TN T T
v efl garm
rg kil arm ) ]
@) Canlilevdr |/dnglh = 26 %4 linchbs.
| |
Ben 1/)70 | AT W
: x NNV AN
(efF| arry @WMM
- />£hve/<>p19 curve of [fondomerital
.y
Bendiny M%WMVV\W/\NW\'\MWVWWVWWWMM
e,g/w‘ 2ryr R i
- oy sec
|
|
Left| armn |
2rghl | a
(6) Capfilgver|langth ¥ /W % inches.

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure /0.-Portions of typrcal records

obtained for fwo different lenigths of ftube.

—_




Fig. 11 NACA ARR No. L4127

n O

Q

)

R

S

“

o

. 5 =

S

v

@

N
1:

3

YV s0 -

W NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS.
7oral

For /. oL lube, 0.028-in.~thick wall,
26 24 in. long

Figure ll.- Theoretical wave Form for extreme-
frber bending sfress at root obtained from
the first fthree rmodes of vibration.



NACA ARR No.

Slress, ksi

Stress, kst

/0

L4127 Fig.

Leng’h, in.

(a) Bending .

\ — —— Theoretical curves
o Average of rightond
\\ /eft arms
A |
NATIDNAL AQVISORY
NOMMITTEE FOR AERONAUTICS
\N A
B —~ \1’\0 - o
/70 20 30 40 50
Length, in.
(b) Shear .

Figure 12.— Comparison of experimentally and
theoretically determined maximum stresses
of fundamental mode at root of cantilever
tvbe. /mpact velocity = 2.5 feel per secord-

12



Fig. 13 NACA ARR No. L4127

O w
(—a_f_x:ﬂ

(a) V- V]

0o l—
b) , v/

0
) v

(0]
(d) ~v/

0

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS.

Figure /3.- Graphic representation of
variouvs velocilty Ffunctions.




(IlllMNlliﬂ!WllNlllﬂlﬂllmlllﬂlﬂllmmllllNI

76 01364 8937




